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Abstract

A new and simple approach to configuration control of redundant manipulators is pre-

sented in this paper. In this approach, the redundancy is utilized to control the manipulator

configuration directly in task space, where the task will be performed. A number of kine-

matic functions are defined to reflect the desirable configuration that will be achieved for

a given end-effector position. The user-defined kinematic functions and the end-effector

Cartesian coordinates are combined to form a set of task-related configuration variables as

generalized coordinates for the manipulator. An adaptive scheme is then utilized to glob-

ally control the configuration variables so as to achieve tracking of some desired reference

trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing

the redundancy to achieve any additional task through the desired time variation of the

kinematic functions. The control law is simple and computationally very fast, and does not

require the complex manipulator dynamic model.

1. Introduction

The remarkable dexterity and versatility that the human arm exhibits in performing

various tasks can be attributed largely to the kinematic redundancy of the arm, which pro-

vides the capability of reconfiguring the arm without affecting the hand position. A robotic

manipulator is called (kinematically) "redundant" if it possesses more degrees-of-freedom
than is necessary for performing a specified task. For instance, in the three-dimensional

space, a manipulator with seven or more joints is redundant since six degrees-of-freedom
are sufficient to position and orient the end-effector in any desired configuration. Redun-

dancy of a robotic manipulator is determined relative to the particular task to be performed.

For example, in the two-dimensional space, a planar robot with three joints is redundant for

achieving any end-effector position, whereas the robot is non-redundant for tasks involving

both position and orientation of the end-effector. In a non-redundant manipulator, a given

position and orientation of the end-effector corresponds to a single set of joint angles and

an associated unique robot configuration (with distinct poses such as elbow up or down).

Therefore, for a prescribed end-effector motion, the evolution of the robot configuration is

uniquely determined. When this evolution is undesirable due to collision with obstacles, ap-

proaching kinematic singularities or reaching joint limits, there is no freedom to reconfigure
the robot so as to reach around the obstacles, or avoid the singularities and joint limits.

Redundancy in the manipulator structure yields increased dexterity and versatility for

performing a task due to the infinite number of joint motions which result in the same
end-effector trajectory. However, this richness in choice of joint motions complicates the
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manipulator control problem considerably. In order to take full advantage of the capabilities

of redundant manipulators, effective control schemes should be developed to utilize the

redundancy in some useful manner. During recent years, redundant manipulators have been

the subject of considerable research, and several methods have been suggested to resolve the

redundancy. In 1969, Whitney [1] suggested the use of Jacobian pseudoinverse to resolve the

redundancy. Over the past two decades, most of the research on redundant manipulators
has been explicitly or implicitly based on the pseudoinverse approach for the utilization

of redundancy through local optimization of some criterion functional. Furthermore, most

proposed methods resolve the redundancy in joint space and are concerned solely with
solving the inverse kinematic problem for redundant manipulators.

In this paper, a new and conceptually simple approach for configuration control of re-

dundant manipulators is presented, which takes a complete departure from the conventional

pseudoinverse methods. In this approach, the redundancy is utilized for global control of

the manipulator configuration directly in task space, where the task will be performed, thus

avoiding the complicated inverse kinematic transformation. A set of kinematic functions is

chosen to reflect the desired additional task that will be performed due to the redundancy.

The kinematic functions succinctly characterize the "self-motion" of the manipulator, in

which the internal movement of the links does not move the end-effector. In other words,
the kinematic functions are used to "shape" the manipulator configuration, given the end-

effector position and orientation. The end-effector Cartesian coordinates and the kinematic

functions are combined to form a set of "configuration variables" which describe the phys-
ical configuration of the entire manipulator in a task-related coordinate system. The con-

trol scheme then ensures that the configuration variables track some desired trajectories as

closely as possible, so that the evolution of the manipulator configuration meets the task

requirements. The control law is adaptive and does not require knowledge of the complex
dynamic model or parameter values of the manipulator or payload. The scheme can be im-

plemented either in a centralized or a decentralized control structure, and is computationally
very fast as a real-time algorithm for on-line control of redundant manipulators.

2. Configuration Control Scheme

The mechanical manipulator under consideration consists of a linkage of rigid bodies

with n revolute or prismatic joints. Let T be the n × 1 vector of torques or forces applied at

the joints and 0 be the n x 1 vector of the resulting relative joint rotations or translations.

The dynamic equation of motion of the manipulator which relates T to 0 can be represented
in the general form [2]

M(0)0+ N(0,0) --- T (1)

where the matrices M and N are highly complex nonlinear functions of 0, 0, and the payload.

Let the m x 1 vector Y (with m < n) represent the position and orientation of the end-

effector (last link) with respect to a fixed Cartesian coordinate system in the m-dimensional

task space where the task is to be performed. The m x 1 end-effector coordinate vector Y
is related to the n x 1 joint angle vector 0 by the forward kinematic model

Y = Y(0) (2)

where Y(0) is an m x 1 vector whose elements are nonlinear functions of the joint angles
and link parameters and embodies the geometry of the manipulator. For a redundant
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manipulator with rn < n, a Cartesian coordinate vector (such as Y) that specifies the

end-effector position and orientation does not constitute a set of generalized coordinates

to completely describe the manipulator dynamics. Nonetheless, equations (1) and (2) form

a valid dynamic model to describe the end-effector motion itself in the task space. The

desired motion of the end-effector is represented by the reference position and orientation

trajectories denoted by the rn x 1 vector Ya(t), where the elements of Ya(t) are continuous

twice-differentiable functions of time. The vector Yd(t) embodies the information on the

"basic task" to be accomplished by the end-effector in the task space.

We shall now discuss the definition of configuration variables and the adaptive control

of redundant manipulators in the subsequent sections.

2.1 Definition of Configuration Variables

Let r = n - rn be the "degree-of-redundancy" of the manipulator, i.e. the number of

"extra" joints. Let us define a set of r kinematic functions (¢i (0), ¢2(0),. • •, Cr(0)) to reflect

the "additional task" that will be performed due to the manipulator redundancy. Each ¢i

can be a function of the joint angles (0i,... ,On) and the link geometric parameters. The

choice of the kinematic functions can be made in several ways to represent, for instance, the

coordinates of any point on the manipulator, or any combination of the joint angles. The

kinematic functions succinctly characterize the "self-motion" of the manipulator, in which

the internal movement of the links does not move the end-effector.

For the sake of illustration, let us consider a planar three-link arm as shown in Figure

l(i). The basic task is to control the end-effector position coordinates Ix, y] in the base

frame. Suppose that we fix the end-effector position and allow internal motion of the links

so that the arm takes all possible configurations. It is found that the locus of point A

is an arc of a circle with center O and radius £t which satisfies the distance constraint

AC _ (_2 + 13). Likewise, the locus of point B is an arc of a circle with center C and

radius _3 which satisfies OB <_ (_i + _2). The loci of A and B are shown as hatched arcs

in Figure l(i), and represent the self-motion of the arm. Now, in order to characterize the

self-motion, we can select a kinematic function ¢(0) to represent, for instance, the terminal

angle ¢ = 0i + 02 + 03, or alternatively we can designate the wrist height yB as the kinematic

function ¢ = _t sin 0t +12 sin(0t +02). The choice of ¢ clearly depends on the particular task

that we wish to perform by the utilization of redundancy, in addition to the end-effector

motion. Let us now consider a spatial 7 dof arm [3] as shown in Figure l(ii), in which the

end-effector position and orientation are of concern. The self-motion of this arm corresponds

to rotation of the elbow point A about the line OB joining the shoulder to the wrist. We

can now define the kinematic function ¢(0) = _, where a is the angle between a normal

line from A to OB and a line perpendicular to OB in the vertical plane, as shown in Figure

l(ii). The kinematic function ¢ then succinctly describes the redundancy and gives a simple

characterization of the self-motion.

Once a set of r task-related kinematic functions ¢ = {¢i, ¢2,.-., Cr} is defined, we have

partial information on the manipulator configuration. The set of m end-effector position

and orientation coordinates Y = (yi,y2,...,Y,n} provides the remaining information on

the configuration. Let us now combine the two sets ¢ and Y to obtain a complete set of n

configuration variables as
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x: {Y,¢}:
= {x1,x=,... ,x_}

(3)

The n × 1 vector X is referred to as the "configuration vector _ of the redundant manipu-

lator and the elements of X, namely {xl,..., xn}, are called the "configuration variables."

The configuration variables {xl,..., x,,} constitute a set of generalized coordinates for the

redundant manipulator. Using the configuration vector X, the manipulator is fully specified

and is no longer redundant in this representation. It is noted that in some applications,

certain end-effector coordinates are not relevant to the task, for instance, in a spot welding

task the orientation of the end-effector is not important. In such cases, the present approach

allows the designer to replace the insignificant end-effector coordinates with additional kine-

matic functions which are more relevant to that particular application. In fact, if m'(< m)
end-effector coordinates are specified, then n - m _ = r'(> r) kinematic functions can be
defined.

The augmented forward kinematic model which relates the configuration vector X to
the joint angle vector 0 is now given by

x : \ ¢(0i = x(o) (4)

From equation (4), the differential model which relates the rates of change of X and 0 is
obtained as

X(t) = J(O)O(t) (5)

where

(6)

is the n × n augmented Jaeobian matrix. The m x n submatrix Je(O) : oY-_ is associated

with the end-effector, while the r × n submatrix Je(O) = °o-_ois related to the kinematic

functions. The two submatrices Je and Jc combine to form the square Jacobian matrix J.

The augmented Jacobian matrix J can be used to test the functional independence of

the kinematic functions {¢1,..., ¢r} and the end-effector coordinates {Yl,..., Ym}. For the

set of configuration variables X = {xl,..., x,_} to be functionally independent throughout

the workspace, it suffices to check that det [J(0)] is not identically zero for all O, [4]. In
other words, when the augmented Jacobian matrix J is rank-deficient for all values of 0, the

kinematic functions chosen are functionally dependent on the end-effector coordinates and

a different choice of ¢ is necessary. When det [J(0)] is not identically zero, the configuration

variables {xl,...,x,_} are not functionally dependent for all 0. Nonetheless, there can be

certain joint configurations 0 = 0o at which det [J(Oo)] = O, i.e., the augmented Jacobian

matrix,_ J is rank-deficient. This implies that the rows ji of J satisfy the linear relationship

_-_i=1 ci Ji = 0, where ei are some constants not all zero. Since the changes of the configu-

ration variables and joint angles are related by Ax = J(O)AO, we conclude that at O = 0o,
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_=I ciAzi : 0. Therefore at a Jacobian singularity,the changes in the configuration vari-

ables {Azl,..., Azn} must satisfythe constraint relationship_=I c_Az_ = 0, and hence

the configuration vector X cannot be changed arbitrarily.

From expression (6), it is clear that the Jacobian matrix J will be singular at any

joint configuration for which the submatrLx Je is rank-deficient;i.e.,at any end-effector

singular configuration. In addition,the Jacobian J willbe singular at those values of 0 for

which the submatrix Je losesfullrank. The lattersingularitiesof J, which are due to the

kinematic functions, are inevitably introduced whenever an additional task is employed to

utilizethe redundancy. However, by judicious choice of the kinematic functions, some of

the singularitiesdue to Jc may be avoided, and the singularitiesof J may be shiftedto the

unusable part of the workspace. Note that even when Je and 5c have fullranks individually,

the augmented matrix J may stillbe rank-deficient.

2.2 Adaptive Configuration Control

Suppose that a user-defined "additionaltask_ can be expressed by the following kine-

matic equality constraint relationships

_)1(0) = _dl(t)

 2(o) = q'd2(t)

=

(v)

where @d_(t) denotes the desired time variation of the kinematic function Oi and isa user-

specifiedcontinuous twice-differentiablefunction of time. The kinematic relationships (7)

can be represented collectivelyin the vector form

=  d(t) (S)

where _bd is an r × 1 vector. Equation (8) represents a set of "kinematic constraints"

on the manipulator and defines the task that will be performed in addition to the basic

task of desired end-effector motion. The kinematic equality constraints (8) are chosen to

have physical interpretations and are used to formulate the desirable characteristics of the

manipulator configuration in terms of motion of other members of the manipulator. For

instance, in the 7 dof arm of Figure l(ii), by controlling the elbow height as well as the

hand coordinates, we can ensure that the elbow avoids collision with vertical obstacles

(such as walls) in the workspace while the hand tracks the desired trajectory. Alternatively,

a particular posture of the manipulator which represents a singular configuration can be

avoided by an appropriate choice of the kinematic constraints in terms of the joint angles.

The proposed formulation appears to be a highly promising approach to the additional task

performance in comparison with the previous approaches which attempt to minimize or
maximize criterion functionals, since we are now able to make a more specific statement

about the evolution of the manipulator configuration. The present approach also covers the

intuitive solution to redundant arm control in which certain joint angles are held constant

for a portion of the task in order to resolve the redundancy. The functional forms of the

kinematic functions _ and their desired behavior _di may vary widely for different additional

tasks, making the approach unrestricted to any particular type of application.
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Based on the foregoing formulation, we can now consider the manipulator with the

n x 1 configuration vector X _s_
= (_) and the n × n augmented Jacobian matrix J -- Je

Once the desired motion of the end-effector Yd(t) is specified for the particular basic

and the required evolution of the kinematic functions @d(t) is specified to meet the desired

additional task, the n × 1 desired configuration vector Xd(t) = (_l_l) is fully determined.
The configuration control problem for the redundant manipulator 'i_ to devise a dynamic

control scheme as shown in Figure 2 which ensures that the manipulator configuration

vector X(t) tracks the desired trajectory vector Xd(t) as closely as possible. In the control

system shown in Figure 2, the actual end-effector position Y(t) and the current value of the

kinematic functions _b(t) are fed back to the controller. The controller uses this feedback

information together with the commanded end-effector motion Yd(t) and the desired time

variation @d(t) to compute the driving torques T(t) that are applied at the manipulator

joints so as to meet the basic and additional task requirements simultaneously.

Different control strategies can be improvised to meet the above tracking requirement,

taking into account the dynamics of the manipulator given by equation (1). There are two

major techniques for the design of tracking controllers in task space, namely model-based

control and adaptive control. For the model-based control [5], the manipulator dynamics is
first expressed in task space as

M=(0)2+ = F (9)

where F isthe n x 1%'irtual" control force vector in the task space, and Mx and Nx are

obtained from equations (1)-(6). The control law which achieves tracking through global
linearizationand decoupling isgiven by

where Kp and K_ are constant position and velocity feedback gain matrices. This control

formulation requires precise knowledge of the full dynamic model and pararneter values of

the manipulator and the payload. The alternative approach is the adaptive control technique

in which the on-line adaptation of the controller gains eliminates the need for the complex
manipulator dynamic model. In this section, we adopt an adaptive control scheme which

has been developed recently and validated experimentally on a PUMA industrial robot [6-8].
The adaptive controller produces the control signal based on the observed performance of

the manipulator and has therefore the capability to operate with minimal information on the

manipulator/payload and to cope with unpredictable gross variations in the payload. The

proposed adaptive control scheme is developed within the framework of Model Reference

Adaptive Control (MRAC) theory, and the adaptive tracking control law in the task space
is given by [6]

F(t) = d(t) + [Kp(t)ECt) + K_(t)E(t)] + [C(t)X_(t) + B(t)f(a(t) + A(t)ffa(t)] (11)

as shown in Figure 3. This control force is composed of three components, namely:

(i) The auxiliary signal d(t) is synthesized by the adaptation scheme and improves transient

performance while resulting in better tracking and providing more flexibility in the
design.
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(ii) The term [Kp(t)E(t) + K_(t)E(t)] is due to the PD feedback controller acting on the

position tracking-error E(t) = Xd(t)- X(t) and the velocity tracking-error E(t) =

x Ct) - xCt).

(iii) The term [C(t)X4Ct)+S(t))dd(t)+ A(t)f(dCt)] is the contribution of the PD 2 feedforward

controller operating on the desired position Xa(t), the desired velocity Xa(t), and the

desired acceleration Xd(t).

The required auxiliary signal and feedback/feedforward controller gains are updated based

on the n x 1 "weighted" error vector q(t) by the following simple adaptation laws [6]:

q(t) = WvE(t) + W_E(t)

d(t) = d(0) + _fl q(t)dt + li2q(t)

Kv(t ) = Kp(0) + al fn t

K,(t) = K_(O) + fll --fat

c(t) = c(0) + ,,1

B(t) = S(O) + "_1 It, t

A(t) = A(O) + X_ [*
Jo

q(t)E'(t)dt + a2q(t)E'(t)

q(t)E'(t)dt + _2q(t)E,'(t)

q(t)X'a(t)dt + v2q(t)X'a(t)

q(t)J('a(t)dt + "_2q(t)Jf'a(t)

q(t)f('a(t)dt + )t2q(t)fCa(t)

(12)

(13)

(14)

(i5)

(16)

(17)

(18)

In equations (13)-(18), {61, al, f_l, Vl,'_l, )tl} are any positive scalar integral adaptation

gains, and {g2,a2,f12, v2,'/2, X2} are zero or any positive scalar proportional adaptation

gains. In equation (12), W v = diagi{wvi} and W_ = diagi{w,,i} are constant n x n weighting
matrices chosen by the designer to reflect the relative significance of the position and velocity

errors E and/_ in forming the vector q. The values of the adaptation gains and weighting

matrices determine the rate at which the tracking-errors converge to zero.

Since the control actuation is at the manipulator joints, the control force F is imple-

mented as the joint torque T where

T(t) = J'(O)F(t) (19)

The augmented Jacobian matrix J(0) is used in equation (19) to map the task forces F(t) to

the joint torques T(t). Equation (19) represents the fundamental relationship between the

task and joint spaces and is the basis for implementation of any task-based control scheme

[5]. Equation (19) can be rewritten as

T(t) = [J'(0)iJ_'(0)

F (t)

Li;)
= J'(O)Fe(t) + J'(O)F_(t) (20)
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where Fe and Fc are the m x I and r x I control force vectors corresponding to the basic task

and the additional task, respectively. It is seen that the total control torque is the sum of

two components: Te = J_Fe, for the end-effector motion (basic task), and Te = J_Fc, for the

kinematic constraints (additional task). Equation (20) shows distinctly the contributions of

the basic and the additional tasks to the overall control torque. Under the joint control law

(20), the desired end-effector trajectory Ya(t) is tracked, and the "extra" degrees-of-freedom

are conveniently used to control the evolution of the manipulator configuration through

tracking of the desired kinematic functions Ca(t). In other words, the self-motion of the

manipulator is controlled by first characterizing this motion in terms of a set of kinematic

functions and then controlling these functions through trajectory tracking.

The adaptive control scheme presented in this section is extremely simple since the

auxiliary signal and controller gains are evaluated from equations (12)-(18) by simple nu-

merical integration by using, for instance, the trapezoidal rule. Thus the computational

time required to calculate the adaptive control law (11) is extremely short. As a result, the

scheme can be implemented for on-line control of redundant manipulators with high sam-

pling rates, resulting in improved dynamic performance. This is in contrast to most existing
approaches which require time-consuming optimization processes unsuitable for fast on-line

control implementation. It is important to note that the adaptation laws (12)-(18) are based

solely on the observed performance of the manipulator rather than on any knowledge of the

complex dynamic model or parameter values of the manipulator and the payload.

3. Conclusions

A simple formulation for configuration control of redundant manipulators has been de-

veloped in this paper. The controller achieves trajectory tracking for the end-effector directly

in the Cartesian space to perform some desired basic task. In addition, the redundancy is

utilized by imposing a set of kinematic constraints on the manipulator to accomplish an

appropriate additional task. The proposed formulation incorporates the kinematic con-

straints (additional task) and the end-effector motion (basic task) in a conceptually simple

and computationally efficient manner to resolve the redundancy. Furthermore, the adap-

tive controller has a very simple structure and the controller gains are adjusted in a simple

manner to compensate for changing dynamic characteristics of the manipulator. The adap-

tation laws are based on the observed performance of the manipulator rather than on any

knowledge of the manipulator dynamic model. Thus, the adaptive controller is capable of

ensuring a satisfactory performance when the payload mass is unknown and time-varying.

Any approach used to resolve redundancy should be implementable as a real-time algorithm,

and therefore the speed of computation is a critical factor. The small amount of compu-

tations required by the proposed method offers the possibility of fast real-time control of

redundant manipulators.
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Figure l(i). Self-motion of Planar 3 dof Arm Figure 1(ii). Self-motion of Spatial 7 dof Arm
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